Multiscale Mass-Spring Models of Carbon Nanotube Arrays Accounting for Mullins-like Behavior and Permanent Deformation

نویسندگان

  • T. Blesgen
  • Fernando Fraternali
  • J. R. Raney
  • C. Daraio
چکیده

Based on a one-dimensional discrete system of bistable springs, a mechanical model is introduced to describe plasticity and damage in carbon nanotube (CNT) arrays. The energetics of the mechanical system are investigated analytically, the stress-strain law is derived, and the mechanical dissipation is computed, both for the discrete case as well as for the continuum limit. An information-passing approach is developed that permits the investigation of macroscopic portions of the material. As an application, the simulation of a cyclic compression experiment on real CNT foam is performed, considering both the material response during the primary loading path from the virgin state and the damaged response after preconditioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Evaluation of the Nonlinear Elastic Properties of Carbon Nanotubes Under Finite Deformation

This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule being applicable at finite strains and accounting for the chirality and material nonli...

متن کامل

Analytical Spring-Mass Model of Impact Behavior of Double-Walled Carbon Nanotubes

In this study, an impact behavior of spherical striker on a double-walled carbon nanotube (DWCNT) is presented based on a three degree of freedom spring-mass model and the finite element (FE) simulations. The semi-analytical solution of the transverse impact of a striker on a DWCNT is investigated by using the elasticity nonlocal theory of Euler-Bernoulli (EBT) and Timoshenko (TBT) nanobeams. T...

متن کامل

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

Multiscale Mass-Spring Model for High-Rate Compression of Vertically Aligned Carbon Nanotube Foams

We present a one-dimensional, multiscale mass-spring model to describe the response of vertically aligned carbon nanotube (VACNT) foams subjected to uniaxial, high-rate compressive deformations. The model uses mesoscopic dissipative spring elements composed of a lower level chain of asymmetric, bilateral, bistable elastic springs to describe the experimentally observed deformation-dependent str...

متن کامل

Continuum limits of bistable spring models of carbon nanotube arrays accounting for material damage

Using chains of bistable springs, a model is derived to investigate the plastic behavior of carbon nanotube arrays with damage. We study the preconditioning effect due to the loading history by computing analytically the stress-strain pattern corresponding to a fatigue-type damage of the structure. We identify the convergence of the discrete response to the limiting case of infinitely many spri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2013